Do excipients purchased from different vendors behave in the same way?

The Mixer Torque Rheometer can be used to assess the behaviour of excipients purchased from different suppliers.


Excipients from different batches or vendors may be variable in quality and it is often necessary to perform pre-formulation assessment for each batch of excipient received.  In some cases, excipients from different vendors require comparative assessment of their equivalent functionality. In this type of assessment, the Mixer Torque Rheometer can be an invaluable tool to evaluate the potential performance of the excipients received, in particular for spheronization aids.

Caleva-MTR-four phases-of-liquid-solid-interaction
Fig 1. Example of MTR curve showing the relation between the mean torque of wet mass with moistening liquid addition and four phases of liquid-solid interactions


Pellets are commonly produced by extrusion and spheronization. Microcrystalline cellulose (MCC) and cross-linked polyvinyl pyrrolidone (XPVP) have been reported to be very good spheronization aids [1]. For the two excipients, many brands and grades are available commercially. Different companies often use raw materials from different sources and employ different processing techniques or conditions to manufacture their excipients. Even with the same process and raw materials, batch to batch variability will exist. Therefore, variabilities in different grades and batches of the same excipient are unavoidable.

The MTR can be a useful pre--formulation tool to characterize excipients, in particular spheronization aids and classify them into several groups according to their performance in pellet production . For the extrusion-spheronization process, the addition of water to a powder mixture to produce a wet mass is required so as to produce a powder mass that is sufficiently cohesive. The MTR can be used to characterize this cohesiveness by determining the rheological behaviour of wet mass [2].

As the MTR involves adding liquid to the powder blend and mixing them using rotating blades, the cohesiveness of powder blend will be related to the resistance on the mixing blades and the resulting torque is measured and recorded. Torque values are used to quantitatively describe this cohesiveness. On the basis of this principle, a curve showing the relationship between mean torque and liquid addition can be generated. Another parameter, cumulative energy of mixing, which describes the total energy input, has also been used to assess the effect of MCC grade variations on the cohesiveness and rheological behaviour of wet mass .


Case Study 1

Soh et al. evaluated eleven different grades of MCC, collected from different excipients companies in their study [3]. Lactose was also used in the study as MCC-lactose blends are commonly used to produce pellets. Maximum torque of MCC [Torquemax(MCC)], maximum torque of blend [Torquemax(blend)], cumulative energy of mixing of MCC [CEM(MCC)] and cumulative energy of mixing of blends [CEM(blend)] were measured. Water content used ranged from 75 % - 175 % (w/w) for MCC and 25 – 55 % (w/w) for blends. Pellets were produced using 3:7 blends of MCC:lactose and 25, 30, 35, 40 and 45 % (w/w) water.
Measured rheological properties (torque parameters) were further correlated with MCC grades and their respective pellets.

The study was essential to understand the characteristics of MCC particles considering their liquid saturation. For example, at lower used water amounts, less porous, denser and more crystalline MCCs resulted in larger torques and thus, more energy was required for mixing. Also, good correlations were found between the rheological properties of MCCs and MCC:lactose blends with the properties of produced pellets, particularly those produced at 30 and 35 % (w/w) water.


Mixer Torque Rheometer bowl and blades

It was easily identified that the physical properties of pellets prepared by MCC:lactose blends could be compared with the rheological properties of MCC grades and it was not necessary to characterize binary mixture. Thus, without the need to prepare MCC:lactose blend for rheological characterization, analysis time could be saved in pre-formulation analysis stage. It was further identified that the rheological properties characterized by the MTR can depict the MCC grade more comprehensively than any single physical characterization parameter of MCC.

The study proved that the MTR can be a powerful preformulation tool to characterize spheronization aids and predict the properties of pellets to be manufactured by extrusion-spheronization.


Case Study 2

Another study, characterizing different MCC grades using MTR further confirmed its suitability as a pre-formulation tool [4]. Rheological properties of different MCC grades were studied and the mean torque value was used for comparison of different MCC grades. Two standard grades of MCC having similar particle size distribution were obtained from two different sources and compared.

Mostly, the mean torque values were lower for the MCC obtained from one source than the MCC obtained from another source. These differences in the mean torque values suggest potential differences in the MCC-water interactions, which could impact the final pellet product quality. Thus, the performance of MCC obtained from different sources could be evaluated based on the rheological characterisation using a Mixer Torque Rheometer.



  • Cumulative energy of mixing, a torque parameter measured by Mixer Torque Rheometer classified excipients into groups by their predicted performance.
  • The quality of the pellets produced using different grades of MCC could be predicted using the measured torque values.
  • Mean torque value proved to be another important parameter to assess the functionalities and performance of spheronization aids.


[1] Sarkar S, Heng PWS, Liew CV. Insights into the functionality of pelletization aid in pelletization by extrusion-spheronization. Pharm Dev Technol 2013; 18(1): 61-72.
[2] Hancock BC, York P, Rowe RC, et al. Characterization of wet masses using a mixer torque rheometer: 1. Effect of instrument geometry. Int J Pharm 1991; 76(3): 239-45.
[3] Soh JLP, Liew CV, Heng PWS. Torque rheological parameters to predict pellet quality in extrusion-spheronization. Int J Pharm 2006; 315(1-2): 99-109.
[4] Luukkonen P, Schæfer T, Hellén L, et al. Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Int J Pharm 1999; 188(2): 181-92.
Ver 00129

Leave A Comment




Talk To Caleva

How to produce consistent formulations from different mixers

Customer Quote: Mr. K.S (Aurobindo) "It is exciting to see the correlation between the two graphs and granulation end point".  With a major pharmaceutical manufacturer, together we characterised all their various mixers to produce a consistent formulation. To identify three important characteristics... Read More

Caleva's Mixer Torque Rheometer and the Shanghai University of Traditional Chinese Medicine

A short review by:   Ruofei Du | Associate Researcher | Innovation Research Institute of Traditional Chinese Medicine | Shanghai University "The main research direction of my group is the preparation technology development of Traditional Chinese Medicine. The Caleva Mixer Torque Rheometer has been w... Read More

Do excipients purchased from different vendors behave in the same way?

The Mixer Torque Rheometer can be used to assess the behaviour of excipients purchased from different suppliers. Background Excipients from different batches or vendors may be variable in quality and it is often necessary to perform pre-formulation assessment for each batch of excipient received.  I... Read More

The Caleva Family of Laboratory Equipment

Whilst you may have heard of Caleva and any one of its flagship pieces of equipment, we'd like to introduce you to the family of Caleva laboratory equipment that you may find helpful for your application in your industry sector.  Choose one process or choose all of them.  Select further functions as... Read More

PharmaTeG purchase a Caleva Mixer Torque Rheometer MTR3

  PharmaTeG – Pharmaceutical Technology Group - is founded by a group of pharmaceutical technologists belonging to the Department of Pharmaceutical and Pharmacological Science and School of Hospital Pharmacy, University of Padova, Italy. The group collaborates with the Industrial Engineering Departm... Read More

Inconsistent spheronization results with difficult active ingredient?

The following case study demonstrates how the Caleva Mixer Torque Rheometer.  The MTR-3 was an invaluable aid in a specific case. A manufacturer of generic Venlafaxine pellets was experiencing inconsistent results from their manufacturing line. The resultant product was variable in both usable yield... Read More

Mixer Torque Rheometer used with Food Powders

Research Article University of Padova where their Caleva Rheometer was used   Abstract Vegetable soups are complex mixtures containing vegetables in different percentages, thickeners, salt, fat, and emulsifying/wetting agents. When prepared as dehydrated powders in convenience foods, they need to be... Read More

Caleva visit to Sandoz for an MTR install

Last week, Scott and Steve represented Caleva, by travelling to India to meet Our long standing distributor for the region, GDI. With Hirak and Prasanta from GDI, they attended meetings, gave presentations and performed an installation and training session of the MTR-3 for Sandoz, a company which is... Read More

The Importance of End Point Detection Consistency

This world is not only for us. Can you imagine world had no animals, what would it be like? Would the trees be green? Without birds or squirrels, less trees would grow. There would be no pets, no flowers and no bees. If even one part of our ecosystem is removed, we will all die. Without animals, we ... Read More

Caleva Multi Lab & Bone Regeneration study Medical University Gdańsk

Drug-loaded mesoporous silica/calcium phosphate composites for bone regeneration Adrian Szewczyk at Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk has kindly allowed us to introduce this paper that introduces a study of Drug-loaded mesoporous silica/calcium phosp... Read More

Agglomeration properties of gluten-free flours under water addition and shearing conditions

The different states of agglomeration were identified by the evolution of rheological properties under water addition and shearing conditions using a Caleva® mixer torque rheometer.  Read More

New installation at Tupras oil refinery in Turkey

A great few days spent at Tupras installing our Mixer Torque Rheometer and Caleva Multi Lab machines in their R&D Laboratories. Tupras (Turkish Petroleum Refineries Corp) in Kocaeli is Turkey’s only oil refiner, operating four refineries with a total capacity to handle an annual 28.1 million tons of... Read More

How reproducible can measurements be of something that is not homogeneous?

The MTR-3 uniquely offers a means of characterising the rheological properties of a wet granulation by providing a quantitative value of the consistency of the material tested. The more traditional hand squeeze test, previously widely used, to measure or compare granulations, is falling into disrepu... Read More

Yield problems in production and quality control

One of the strengths of the Caleva Mixer Torque Rheometer (MTR-3) is that it can be used to verify the properties of wet powder mass samples taken during production in large scale mixer/granulator systems. It can be used simply as a quality control tool on a regular basis or specifically as an aid t... Read More

How the Mixer Torque Rheometer resolved a tablet friability issue

Caleva worked closely with a well known producer of food supplements made from natural materials, plant extracts and other natural food sources.  Their tablet formulations work well and this nutraceutical company has a good reputation for their products.  Generally they do not encounter problems wit... Read More

Determination of moisture requirement to prepare spheroids by extrusion-spheronization

Spheroids are popularly used in the design of multi-particulate drug delivery systems. Extrusion and spheronization is commonly employed to manufacture spheroids in the pharmaceutical industry. It is a multiple-step manufacturing process which could be summarized into the flow chart as shown in Figu... Read More

Save Time and Cost in Formulation Development

In the mid 1990’s, the field of pyrotechnics was limited mainly to applications in aircraft ordnance, fireworks and rock blasting. This has been developed to a highly advanced science and is an extensively used technology which finds application in spacecraft, aircraft and underwater vehicle systems... Read More

"End Point Determination” Using the Caleva Mixer Torque Rheometer

A company wished to move a formulation currently undergoing product development from small scale laboratory (with batches of 50 grams) to the next stage for a larger scale batch trial of 100 kg (scale–up).  The development had been started using a small Caleva Multi Lab bench top mixer (maximum batc... Read More

Pharmacy Students from University of Reading visit Caleva’s Laboratory

We were delighted to welcome Akhil and Mohammed to our laboratory in the UK for training on our laboratory equipment. They both worked with the Mini Coater Drier and Mixer Torque Rheometer as well as the Caleva Multi Lab. It was an enjoyable day for all and we appreciate their visit and they are wel... Read More

Caleva Mixer Torque Rheometer - The importance of mixing time for your formulation development and production

It is well established and understood that one of the most important factors in the development of a formulation for both tableting and making pellets by extrusion and spheronization is the amount of liquid binder added to the formulation. What is less widely acknowledged is the importance of mixing... Read More

Caleva Visit to GPO in Thailand on 27th March 2013

he Thai GPO (Government Pharmaceutical Organisation) based in Bangkok has been a user of Caleva bench-top extruders and spheronizers as well as the Caleva Mixer Torque Rheometer for many years.   A meeting was held to discuss on-going work to see if any of the formulations developed in the laborator... Read More